Companies that want to be competitive in today’s digital economy enjoy the benefit of countless reams of data available for market research. In fact, thanks to the advent of big data, there’s a veritable tidal wave of information ready to be put to good use, helping businesses make intelligent decisions and thrive.
But before that data can be used, it must be processed. But before it can be processed, it must be collected, and that’s what we’re here for. This article explores the subject of data collection. We will learn about the types of data collection methods and why they are essential.
We will detail primary and secondary data collection methods and discuss data collection procedures. We’ll also share how you can learn practical skills through online data science training.
But first, let’s get the definition out of the way. What is data collection?
Data collection is the act of collecting, measuring and analyzing different kinds of information using a set of validated standard procedures and techniques. The primary objective of data collection procedures is to gather reliable, information-rich data and analyze it to make critical business decisions. Once the desired data is collected, it undergoes a process of data cleaning and processing to make the information actionable and valuable for businesses.
Your choice of data collection method (or alternately called a data gathering procedure) depends on the research questions you’re working on, the type of data required, and the available time and resources and time. You can categorize data-gathering procedures into two main methods:
Let’s take a closer look at specific examples of both data collection methods.
As mentioned, primary data collection methods are split into quantitative and qualitative. We will examine each method’s data collection tools separately. Then, we will discuss secondary data collection methods.
Quantitative techniques for demand forecasting and market research typically use statistical tools. When using these techniques, historical data is used to forecast demand. These primary data-gathering procedures are most often used to make long-term forecasts. Statistical analysis methods are highly reliable because they carry minimal subjectivity.
Qualitative data collection methods are instrumental when no historical information is available, or numbers and mathematical calculations aren’t required. Qualitative research is closely linked to words, emotions, sounds, feelings, colors, and other non-quantifiable elements. These techniques rely on experience, conjecture, intuition, judgment, emotion, etc. Quantitative methods do not provide motives behind the participants’ responses. Additionally, they often don’t reach underrepresented populations and usually involve long data collection periods. Therefore, you get the best results using quantitative and qualitative methods together.
Once researchers collect the data, survey software generates reports and runs analytics algorithms to uncover hidden insights. Survey dashboards give you statistics relating to completion rates, response rates, filters based on demographics, export and sharing options, etc. Practical business intelligence depends on the synergy between analytics and reporting. Analytics uncovers valuable insights while reporting communicates these findings to the stakeholders.
Secondary data is the information that’s been used in past situations. Secondary data collection methods can include quantitative and qualitative techniques. In addition, secondary data is easily available, so it’s less time-consuming and expensive than using primary data. However, the authenticity of data gathered with secondary data collection tools cannot be verified.
Internal secondary data sources:
External secondary data sources:
Data collection methods play a critical part in the research process as they determine the accuracy and quality and accuracy of the collected data. Here’s a sample of some reasons why data collection procedures are so important:
Data collection is the first step in the data processing process. Data collection involves gathering information (raw data) from various sources such as interviews, surveys, questionnaires, etc. Data processing describes the steps taken to organize, manipulate and transform the collected data into a useful and meaningful resource. This process may include tasks such as cleaning and validating data, analyzing and summarizing data, and creating visualizations or reports.
So, data collection is just one step in the overall data processing chain of events.
If this discussion about data collection and the professionals who conduct it has sparked your enthusiasm for a new career, why not check out this online data science program ?
The Glassdoor.com jobs website shows that data scientists in the United States typically make an average yearly salary of $129,127 plus additional bonuses and cash incentives. So, if you’re interested in a new career or are already in the field but want to upskill or refresh your current skill set, sign up for this bootcamp and prepare to tackle the challenges of today’s big data.